Received: July 31, 1974

PRELIMINARY NOTE

Chlorination of Perfluorodiazines

R.D. CHAMBERS, W.K.R. MUSGRAVE and P.G. URBEN

Department of Chemistry, University Science Laboratories, South Road, Durham, DH1 3LE (Gt. Britain)

Chlorination of pentafluoropyridine¹ and fluorinations of perfluorodiazines² with cobalt trifluoride have been reported. Here we describe some novel products obtained in preliminary experiments involving reactions of tetrafluoro-pyrimidine and -pyrazine with chlorine.

Fluorination of tetrafluoropyrimidine gave a dimer² whereas photochemical chlorination gives a mixture of monomeric and dimeric products. The structure

of (II) follows from the 19 F n.m.r. spectrum and analysis and is unexpected. The 19 F n.m.r. spectrum of (II) shows a prominent AA' system at 89.9 and 95.9 p.p.m. (from CFCl $_3$), $J_{AA'}$ = 205 Hz, which indicates that inversion of the N-C1 centre is prevented; F_B occurs as a sharp triplet, 143.3 p.p.m. J_{AB} = 15, $J_{A'B}$ = 15 Hz, while F_C occurs as a broadened singlet 29.6 p.p.m. although it could not contain a J value > 5 Hz. Formation of the CF $_2$ group in (II) seems more likely to occur via production of C1F and then addition, as indicated below, rather than a mechanism involving fluorine atom migration.

(I)
$$(i) + C1_2 \rightarrow F \rightarrow N \rightarrow C1$$
(II)

The structures of the dimers (IV) have not been established, but g.l.c./m.s. indicates a mixture of $C_8N_4F_{10}Cl_2$, $C_8N_4F_8Cl_6$ and $C_8N_4F_9Cl_5$, presumably formed by coupling through nitrogen, in a process similar to that observed in fluorination of (I). Structure assignment of (III) was made by comparison on the ^{19}F n.m.r. spectrum with data obtained for (II), $98 \cdot 8(A)$; $130 \cdot 1(B)$; $34 \cdot 3$ p.p.m., $J_{A_1B} = 16$ Hz.

Tetrafluoropyrazine gave mainly the di-imine (VI), whose structure follow from analysis, m.s. and a singlet ¹⁹F n.m.r. spectrum at 78·2 p.p.m. (CFC1₃);

also, the u.v. showed no absorption at all above 220 nm. whereas (VII) showed bands at 215 and 325 nm. Compound (VII) showed a singlet at 98.6 p.p.m. in the ¹⁹F n.m.r. spectrum. The formation of the difluoromethylene groups in (VI) a (VII) may be accounted for in a mechanism, involving C1F, similar to that described above for reactions involving tetrafluoropyrimidine.

Tetrafluoropyridazine did not appear to react with chlorine under similar conditions.

- R.E. Banks, W.M. Cheng, R.N. Haszeldine, and G. Shaw, J. Chem. Soc. (C), (1970) 55.
- 2. R.D. Chambers, D.T. Clark, T.F. Holmes, W.K.R. Musgrave, and I. Ritchie, J. Chem. Soc. Perkin I, (1974) 114.